
Python for School Students – Learn to Code

Creatively

This document outlines the syllabus for a Python programming course designed for students

in grades 6th through 12th. The course aims to introduce fundamental coding concepts and

logic-building skills, enabling students to create fun, interactive Python programs. The

curriculum covers essential topics such as variables, data types, conditional logic, loops,

functions, data structures, and file handling (optional for older students). Through hands-on

activities and mini-projects, students will gain practical experience and develop the ability to

read and write small programs independently. Upon completion, participants will receive a

certification acknowledging their newly acquired Python programming skills.

Course Details

Course Name: Python for School Students – Learn to Code

Creatively

Target Audience: Class 6th to 12th Students

Duration: 20 to 30 hours

Mode: Online / Offline

Fee: ₹ 15,000

Module-wise Syllabus

Module 1: Introduction to Computers & Python

•

What is Programming?

•

Explanation of what programming is and its importance in today's world.

•

Introduction to algorithms and how they translate into code.

•
Introduction to Python & its Uses

•
Overview of Python's history, features, and advantages.

•

Real-world applications of Python in various fields (e.g., web development, data

science, game development).

•
Installing Python & IDE (Thonny/VS Code)

•

Step-by-step guide on installing Python on different operating systems.

•

Introduction to Integrated Development Environments (IDEs) like Thonny and VS

Code.

•
Setting up the IDE for Python development.

•

Writing Your First Python Program

•

Basic syntax of Python.

•

Creating a simple Python script.

•
Running the script in the IDE.

•

Print Statements, Comments

•

Using the print() function to display output.

•
Adding comments to the code for explanation and documentation.

•

Activity: Hello World, Greeting Generator

•

Write a program to print "Hello, World!".

•
Create a program that takes user input (name) and generates a personalized

greeting.

Module 2: Variables, Data Types & Operators

•

Variables and Naming Rules

•
Understanding variables as containers for storing data.

•

Rules for naming variables in Python (e.g., valid characters, case sensitivity).

•

Data Types: Numbers, Strings, Booleans

•
Introduction to different data types: integers, floating-point numbers, strings,

and booleans.

•

Understanding the characteristics and uses of each data type.

•

Operators (Arithmetic, Relational, Logical)

•
Arithmetic operators (+, -, *, /, %, **) for performing calculations.

•

Relational operators (==, !=, >, <, >=, <=) for comparing values.

•

Logical operators (and, or, not) for combining conditions.

•

Type Conversion

•
Converting data from one type to another using functions like int(), float(), and

str().

•

Activity: Simple Calculator

•
Create a program that takes two numbers as input and performs basic

arithmetic operations (+, -, *, /).

Module 3: Conditional Logic (If-Else)

•

Decision Making using if, elif, else

•

Using if statements to execute code based on a condition.

•

Adding elif (else if) to handle multiple conditions.

•

Using else to execute code when no condition is met.

•

Nested Conditions

•

Using if statements inside other if statements to create more complex logic.

•

Simple Games using If-Else

•

Developing simple games like number guessing games or decision-based

stories using conditional logic.

•

Activity: Guess the Number Game

•

Create a game where the computer generates a random number, and the user

has to guess it. Provide feedback (higher or lower) until the user guesses

correctly.

Module 4: Loops in Python

•
while Loop

•
Understanding the while loop and its syntax.

•
Using while loops to repeat a block of code as long as a condition is true.

•
for Loop

•
Understanding the for loop and its syntax.

•
Using for loops to iterate over a sequence (e.g., a list or a string).

•
Range Function

•
Using the range() function to generate a sequence of numbers for use in for

loops.

•
Nested Loops

•
Using loops inside other loops to create more complex patterns or iterate over

multi-dimensional data.

•

Activity: Print Patterns, Multiplication Table

•
Write programs to print various patterns using nested loops (e.g., a triangle or a

square).

•
Create a program to print the multiplication table for a given number.

Module 5: Functions and Code Reuse

•
Defining Functions

•
Understanding the concept of functions and their importance in code

organization.

•
Defining functions using the def keyword.

•
Parameters and Return Values

•
Passing parameters to functions to provide input.

•
Returning values from functions using the return statement.

•
Calling Functions

•
Calling functions to execute the code they contain.

•
Using Built-in Functions

•
Exploring and using various built-in functions in Python (e.g., len(), max(), min(),

abs()).

•

Activity: Math Helper Functions

•
Create functions to perform specific mathematical operations (e.g., calculating

the area of a circle, finding the factorial of a number).

Module 6: Data Structures (Lists, Strings)

•
Working with Lists: Add, Delete, Modify

•
Understanding lists as ordered collections of items.

•

Adding elements to a list using append(), insert().

•

Deleting elements from a list using remove(), pop().

•

Modifying elements in a list by assigning new values.

•

Looping through Lists

•

Iterating over the elements of a list using for loops.

•

String Manipulation

•

Performing various operations on strings (e.g., concatenation, slicing, finding the

length, changing case).

•

Activity: Student Marks Manager

•

Create a program to store and manage student marks using lists. Allow the user

to add, delete, and modify marks, and calculate the average.

Module 7: File Handling (Optional for Class 10+)

•
Reading and Writing Text Files

•
Opening and closing text files using the open() function.

•
Reading data from a file using read(), readline(), and readlines().

•
Writing data to a file using write() and writelines().

•
CSV Basics

•
Introduction to CSV (Comma Separated Values) files.

•
Reading and writing CSV files using the csv module.

•

Storing Data in Files

•

Storing program data in text or CSV files for later use.

•

Activity: Save Quiz Scores to File

•

Modify the quiz game from Module 3 to save the user's scores to a file.

Module 8: Fun with Python Projects

•

Mini Projects:

•

Rock-Paper-Scissors Game

•

Develop a classic Rock-Paper-Scissors game where the user plays against

the computer.

•

Dice Simulator

•

Create a program that simulates rolling a dice and displays the result.

•

Quiz Game

•

Build a quiz game with multiple-choice questions and scoring.

•

Birthday Reminder

•

Develop a program that reminds the user of upcoming birthdays.

•

Story Generator

•

Create a program that generates random stories based on user input.

Course Outcomes

•

Understand coding concepts and logic-building.

•

Be able to build fun, interactive Python programs.

•

Read and write small programs independently.

•

Certification of Completion.

For More Details Contact:

OJSS IT CONSULTANCY

WhatsApp on: +91 7889260252

Email ID: ojssindia@gmail.com

Web: www.ojssindia.in
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