
Python for School Students – Learn to Code

Creatively

This document outlines the syllabus for a Python programming course designed for students

in grades 6th through 12th. The course aims to introduce fundamental coding concepts and

logic-building skills, enabling students to create fun, interactive Python programs. The

curriculum covers essential topics such as variables, data types, conditional logic, loops,

functions, data structures, and file handling (optional for older students). Through hands-on

activities and mini-projects, students will gain practical experience and develop the ability to

read and write small programs independently. Upon completion, participants will receive a

certification acknowledging their newly acquired Python programming skills.

Course Details

Course Name: Python for School Students – Learn to Code

Creatively

Target Audience: Class 6th to 12th Students

Duration: 20 to 30 hours

Mode: Online / Offline

Fee: ₹ 15,000

Module-wise Syllabus

Module 1: Introduction to Computers & Python

•

What is Programming?

•

Explanation of what programming is and its importance in today's world.

•

Introduction to algorithms and how they translate into code.

•
Introduction to Python & its Uses

•
Overview of Python's history, features, and advantages.

•

Real-world applications of Python in various fields (e.g., web development, data

science, game development).

•
Installing Python & IDE (Thonny/VS Code)

•

Step-by-step guide on installing Python on different operating systems.

•

Introduction to Integrated Development Environments (IDEs) like Thonny and VS

Code.

•
Setting up the IDE for Python development.

•

Writing Your First Python Program

•

Basic syntax of Python.

•

Creating a simple Python script.

•
Running the script in the IDE.

•

Print Statements, Comments

•

Using the print() function to display output.

•
Adding comments to the code for explanation and documentation.

•

Activity: Hello World, Greeting Generator

•

Write a program to print "Hello, World!".

•
Create a program that takes user input (name) and generates a personalized

greeting.

Module 2: Variables, Data Types & Operators

•

Variables and Naming Rules

•
Understanding variables as containers for storing data.

•

Rules for naming variables in Python (e.g., valid characters, case sensitivity).

•

Data Types: Numbers, Strings, Booleans

•
Introduction to different data types: integers, floating-point numbers, strings,

and booleans.

•

Understanding the characteristics and uses of each data type.

•

Operators (Arithmetic, Relational, Logical)

•
Arithmetic operators (+, -, *, /, %, **) for performing calculations.

•

Relational operators (==, !=, >, <, >=, <=) for comparing values.

•

Logical operators (and, or, not) for combining conditions.

•

Type Conversion

•
Converting data from one type to another using functions like int(), float(), and

str().

•

Activity: Simple Calculator

•
Create a program that takes two numbers as input and performs basic

arithmetic operations (+, -, *, /).

Module 3: Conditional Logic (If-Else)

•

Decision Making using if, elif, else

•

Using if statements to execute code based on a condition.

•

Adding elif (else if) to handle multiple conditions.

•

Using else to execute code when no condition is met.

•

Nested Conditions

•

Using if statements inside other if statements to create more complex logic.

•

Simple Games using If-Else

•

Developing simple games like number guessing games or decision-based

stories using conditional logic.

•

Activity: Guess the Number Game

•

Create a game where the computer generates a random number, and the user

has to guess it. Provide feedback (higher or lower) until the user guesses

correctly.

Module 4: Loops in Python

•
while Loop

•
Understanding the while loop and its syntax.

•
Using while loops to repeat a block of code as long as a condition is true.

•
for Loop

•
Understanding the for loop and its syntax.

•
Using for loops to iterate over a sequence (e.g., a list or a string).

•
Range Function

•
Using the range() function to generate a sequence of numbers for use in for

loops.

•
Nested Loops

•
Using loops inside other loops to create more complex patterns or iterate over

multi-dimensional data.

•

Activity: Print Patterns, Multiplication Table

•
Write programs to print various patterns using nested loops (e.g., a triangle or a

square).

•
Create a program to print the multiplication table for a given number.

Module 5: Functions and Code Reuse

•
Defining Functions

•
Understanding the concept of functions and their importance in code

organization.

•
Defining functions using the def keyword.

•
Parameters and Return Values

•
Passing parameters to functions to provide input.

•
Returning values from functions using the return statement.

•
Calling Functions

•
Calling functions to execute the code they contain.

•
Using Built-in Functions

•
Exploring and using various built-in functions in Python (e.g., len(), max(), min(),

abs()).

•

Activity: Math Helper Functions

•
Create functions to perform specific mathematical operations (e.g., calculating

the area of a circle, finding the factorial of a number).

Module 6: Data Structures (Lists, Strings)

•
Working with Lists: Add, Delete, Modify

•
Understanding lists as ordered collections of items.

•

Adding elements to a list using append(), insert().

•

Deleting elements from a list using remove(), pop().

•

Modifying elements in a list by assigning new values.

•

Looping through Lists

•

Iterating over the elements of a list using for loops.

•

String Manipulation

•

Performing various operations on strings (e.g., concatenation, slicing, finding the

length, changing case).

•

Activity: Student Marks Manager

•

Create a program to store and manage student marks using lists. Allow the user

to add, delete, and modify marks, and calculate the average.

Module 7: File Handling (Optional for Class 10+)

•
Reading and Writing Text Files

•
Opening and closing text files using the open() function.

•
Reading data from a file using read(), readline(), and readlines().

•
Writing data to a file using write() and writelines().

•
CSV Basics

•
Introduction to CSV (Comma Separated Values) files.

•
Reading and writing CSV files using the csv module.

•

Storing Data in Files

•

Storing program data in text or CSV files for later use.

•

Activity: Save Quiz Scores to File

•

Modify the quiz game from Module 3 to save the user's scores to a file.

Module 8: Fun with Python Projects

•

Mini Projects:

•

Rock-Paper-Scissors Game

•

Develop a classic Rock-Paper-Scissors game where the user plays against

the computer.

•

Dice Simulator

•

Create a program that simulates rolling a dice and displays the result.

•

Quiz Game

•

Build a quiz game with multiple-choice questions and scoring.

•

Birthday Reminder

•

Develop a program that reminds the user of upcoming birthdays.

•

Story Generator

•

Create a program that generates random stories based on user input.

Course Outcomes

•

Understand coding concepts and logic-building.

•

Be able to build fun, interactive Python programs.

•

Read and write small programs independently.

•

Certification of Completion.

For More Details Contact:

OJSS IT CONSULTANCY

WhatsApp on: +91 7889260252

Email ID: ojssindia@gmail.com

Web: www.ojssindia.in

Data Types

Operators

Python Programming Concepts

Simple Calculator

Type Conversion

Variables

Writing First

Program

Writing a program to

print "Hello, World!

Using Print

Statements

Understanding

Programming

Step-by-step guide

on installing Python

Setting up IDE

Create complex logic with

multiple layers.

Execute code when no condition

is met.

Execute code based on a single

condition.

Handle multiple conditions

sequentially.

How to use conditional logic in Python?

Use `elif`

Use `else`

Use `if`

Use Nested Conditions

Overview of Python's

history and features

Introduction to

Python

Introduction to IDEs

like Thonny and VS

Code

Introduction to Python Programming

Installing Python

Explanation of

programming and

its importance

1

2

3

4

5

Apply loops to

repeat code

blocks.

Apply to

Activities

Combine loops for

complex patterns.

Create

Nested Loops

Generate

Sequences

Learn the basic

structure of loops.

Python Loop Mastery Cycle

Understand

Loop Syntax

Use Loops

Use loops in

practical coding

tasks.

Use range() to

create number

sequences.

Displaying output

using the print

function

Creating a program

for personalized

greetings

Basic syntax and

creating a simple

script

Adding

Comments

Adding comments

for explanation and

documentation

Activity: Hello

World

1

2

3

4

5

Activity

Built-in

Functions

Calling

Functions

Core concept for

code organization

Executing function

code

Functions

Input and output

mechanisms

Parameters

and Return

Values

Practical

application of

functions

Pre-existing

functionalities

Python Functions Mastery

Activity: Greeting

Generator

Variables, data types, conditional logic

Rock-Paper-

Scissors

Simulates rolling a

dice and shows

result.

Story Generator

Python Programming Skills Pyramid

Activity:

Student

Marks

Manager

Adding

Elements

Deleting

Elements

Looping

through

Lists

Modifying

Elements

Python Data Structures and

Operations

String

Manipulation

Understanding

Lists

Practical Experience

Activity: Save

Quiz Scores

Employ `read()`,

`readline()`, or

`readlines()` to

retrieve data

Introduce CSV

Learn about CSV

file structure

Modify a quiz

game to save

scores to a file

Open Text File

Python File Handling and CSV Operations

Read CSV

Read Data

Save program

data in text or

CSV files

Store Program

Data

Use `open()` to

access a text file

Use the `csv`

module to write

CSV data

Use the `csv`

module to read

CSV data

Utilize `write()` or

`writelines()` to

store data

Write CSV

Write Data

Hands-on activities and mini-projects

Fundamentals

Functions, data structures, file handling

Core Topics

Certification

Basic coding concepts and logic

Advanced Skills

Acknowledgment of acquired Python skills

A classic game

against the

computer.

A multiple-choice

quiz game with

scoring.

Birthday

Reminder

Dice Simulator

Generates random

stories based on

user input.

Python project ideas

Quiz Game

Reminds the user of

upcoming birthdays.

mailto:ojssindia@gmail.com

